Ünlü Matematikçiler

Fourier (1768 - 1830)

Bir terzinin oğlu olan Jean Babtiste Joseph Fourier, 21 Mart 1768 günü Fransa' da Auxerre kentinde doğmuştur. Henüz dokuz yaşındayken hem annesini ve hem de babasını yitirmiştir. Hayırsever Madam Moiton ve Auxerre kasabasının baş rahibine ne kadar teşekkür edilse azdır. Çünkü, bu hayırsever kimseler öksüz ve kimsesiz kalan Fourier'i şehirdeki askeri okula gönderdiler. Fourier kendisini bu okulda çok iyi bir şekilde yetiştirdi. Bu okulda kısa bir sürede kendisini gösterdi. On iki yaşındayken yazdığı dini yazıları, Paris kiliselerinde okunuyor ve benimseniyordu. Bu sıralarda, güç beğenen, titiz, inatçı, hırçın, sert ve şeytan bir çocuk kesildi. Matematikle ilk karşılaşınca büyülenmiş gibi oldu. Kendi kendine neyin zararlı olduğunu anladı ve kısa bir sürede kendi kendini iyi etti. Herkesin uyuduğu saatlerde topladığı mum parçalarını birleştirerek gece paravanaların arkasına gizlenerek ders çalışıyordu. İyi kalpli benediktenler genç dahiyi papaz olması için razı ettiler. Fourier, müritliğini yapmak için Saint-Benoit manastırına gitti. Yemin etmeden önce 1789 Fransız Devrimi ona yetişti. O, subay olmak istemişti. Fakat, terzi oğluna subaylık diploması verilmediğinden, askeri papaz olmak istemişti. İhtilal onu bu durumdan da kurtardı. Onun eski arkadaşları Fourier'in bir papaz olamayacağını anladıkları için, geri Auxerre'e çağırdılar ve onu matematik öğretmeni yaptılar. Hastalanan arkadaşları yerine onlardan daha iyi fizik ve klasik dersler veriyordu. 1789 yılında yirmi bir yaşında denklemlerin sayısal çözümüne ait bir çalışmayı Akademiye sundu.

Fourier, başlangıçta devrim tarafını tuttu. Daha sonraki terör ve şiddete karşı da cephe aldı. Cahilliğin yenilmesi için Napolyon'a okullar açtırdı. Ecole Normale' de bu amaçla öğretmenler yetiştirildi. Bu okulun matematik kürsüsüne öğretmen olarak atandı. Ders vermeleri bir ciddiyete soktu. Kendisi de orada tüm hocalara örnek dersler veriyordu. Fourier, 1787 ile 1794 yılları arasını orta dereceli okullarda öğretmenlik yaparak geçirdi. Fransız devrimi sırasında önemli görevler aldı. Bu etkin görevlerden dolayı fazla göze battı ve 1794 yılında bazı zamanlar da Auxerre hapishanesinde yattı. Hapishaneden çıktıktan sonra, EcoIe Normale'de ve Ecole Polytechnique'te matematik öğretmenliği yaptı. Bu aralık, denklemler kuramı ve uygulamalı matematikte bazı araştırmalarda bulundu. Fourier serilerini ve Fourier analizini oluşturdu.

1798 yılında Napolyon Mısır'a giderken Fourier, onun yanında bu yolculuğa katıldı. Mısır yolculuğunda Napolyon'a arkadaşlık etti. Bir yıl sonra, Napolyon Fourier'i bu seferdeki ilim heyetinin başına atadı. Yukarı Mısır'da araştırma yapma, kayıtları, yazıları inceleme ve tapınaklarda araştırma yapmalarını istedi. 1801 yılında Mısır'dan Fransa'ya dönen Fourier'e Napolyon tarafından çok ağır yöneticilik görevleri verildi. Bu dönüşten sonra 1803 yılında Baron oldu. Bu kadar ağır ve yoğun yönetici görevlere karşın, Fourier yine araştırmalar için kendine zaman buldu. Bu ara yine ısının matematik kuramı üzerine araştırmalarını yaptı. En önemli çalışması "Isının Analitik Kuramı" adlı yapıtıdır. Bu eser, 1822 yılında yayınlandı. Fourier, ısının iletkenliği kuramı hakkında olan araştırmasıyla, fizik matematiğin bugünkü gelişmesi çağını açmıştır. Bu nedenle, bugünkü medeniyetimizin gelişmesinin büyük bir kısmını Monge ve Fourier'e borçluyuz. Fourier'in yaptıkları pratik sahalarda oldukça çok kullanılır. El kitaplarında verilen birçok kural onundur. Elektrik, ses ve radyo teknikleri bugün herkesçe bilinir.

Fourier, Grenoble' de kaldığı sırada kaleme aldığı "Isının Analitik Kuramı" adlı kitabını 1807 yılında Akademiye sundu. Bu eseri çok tartışıldı ve beğenilmedi. Raportörlükte, Laplace, Lagrange ve Legendre vardı. 1812 yılındaki ödül için başka bir çalışma sunması istendi. Fourier, bu ödülü aldı. Fakat daha önce sunduğu çalışmasının dönmesine çok kırıldı. Onun tartışmasız olan eseri, halen yaşayan Fourier analizidir. Devirlilik kavramı, Ayın, Güneşin ve Dünya' nın hareketleri, gece, gündüz, mevsimler ve Güneşin lekeleri gibi olaylar hep bu türdendir. Bundan sonra çok katlı devirlilik çıkacaktır. Fourier, 1807 yılında kaleme aldığı eserini 1822 yılında bitirdi ve bu şaheser oldu.

1 Mart 1815 yılında Napolyon' un Elbe Ada'sından kaçarak Fransız kıyılarına ayak basınca, gelişen olaylar Fourier'i esir düşürdü. Bourgain'de bulunan Napolyon' un huzuruna çıkarıldı. Napolyon' un iğneleyici sözleriyle karşılaştı. Fourier yeniden Napolyon tarafına geçti. Fakat, Napolyon'un yüzüne karşı da "Kaybedeceksiniz" sözünü söylemekten kendini alamadı.

iktidarların sürekli el değiştirmesi ve karşılıklı ihtilaller Fourier'i güç durumlara soktu. Bu çalkantılı dönemlerden sonra eşyalarını rehine verecek kadar perişan oldu. Dostları onu açlıktan ölmesin diye Seine istatistik Bürosuna müdür olarak atanmasını sağladılar. 1816 yılında Akademiye üye seçilmesine hükümet karşı koydu. Ancak ertesi yıl üye seçilebildi. Bu onun için çok acınacak bir hal oldu. Yine de rahat durmadı. Boş kaldığı zamanlarda çalışmalarını sürdürdü.

Fourier'in son yılları gürültü ve patırtı içinde sönüp gitti. Akademinin sürekli katibi olduktan sonra kendine dinleyici bulmakta güçlük çekmiyordu. Napolyon devrinde yaptıklarıyla övünmesi boşa giden çırpınışlardı. Artık O, dayanılmaz bir gevezeden başka birisi değildi. İlmi çalışmalara devam edeceğine, dinleyicilerine yapacağı büyük işlerden söz ediyordu. Aslında kendine düşen görevi fazlasıyla yerine getirmişti. Son yıllarda kendi kendine övünüyordu. Onun buna hiç gereksinimi de yoktu.

Mısır'da kaldığı süre içinde garip bazı alışkanlıklar da edinmişti. Çölün sıcağının sağlık için en iyi bir ortam olduğuna inanmıştı. Bu nedenle bir mumya gibi örtünüyor, çöl sıcağı kadar sıcak odalarda oturuyordu. 16 Mayıs 1850 yılında altmış üç yaşında bir kalp hastalığından veya bazılarına göre de bir damar çatlamasından öldü. Medeniyetin izlerinin Fourier'in eserlerinde taşındığı bir gerçektir.
 
Galois (1811 - 1832)

Fransız matematikçisi Galois, 1811-1832 yılları arasında yaşadı. Abel'in çağdaşı olan bu matematikçinin doğum ve ölüm tarihlerine bakarsanız 21 yıllık bir ömür sürdüğünü görür ve bu işte bir yanlışlık olduğunu düşünebilirsiniz. Hiçbir yanlışlık yok. Galois'nın hayatı Brezilya dizilerine konu olmaya aday şanssızlıklarla sürüp gitmiş ve 21 yılda tükenmiştir.

Yakınları kendisinden söz ederken, annesinin erkek huylu, cömert, şerefli, açık bir şekilde alaycılığa kaçan ve bazen de çelişkilerde karar kılan bir kadın gibi anlatılıyordu. Anne, 1872 yılında seksen dört yaşında öldü. Aklını ve hafızasını ölünceye kadar korudu. O da, kocası gibi zulme, haksızlığa karşı bir öfke, kızma ve hınç besliyordu. Babası gibi, annesinin bu duyguları Galois da da görülür. Bu duygu ve düşüncelerden Galois da kurtulamamıştır. Onun kısa yaşamında bu duyguların etkisi çok büyük olmuştur.

Abel yoksulluktan ölmüştü. Galois ise, başkalarının budalalığından ölmüştür. İlim tarihi, en kaba budalalığın dehaya karşı zaferine, Galois'nın çok kısa süren hayatı kadar kusursuz ve eksiksiz bir örnek vermemiştir. Burada bir noktaya dikkat etmek gerekir. Galois bir melek değildi. Çok taşkındı ve derisine sığmıyordu. Bu onun yaramazlığından değil de, zekasının kafasının içine sığmamasındandı. O parlak yeteneği, aleyhine birleşmiş koyu bir budalalıkla boğulup gitti. Galois'nın her davranışı, taşan zekası ve onun dahi kafasının istediği yönde yönlendirilmediğinden ileri gelmiştir.

Galois'nın ne anne ve ne de baba tarafından matematiğe karşı en küçük bir yetenek görülmemiştir. Galois'nın matematik dehası, birden bire delikanlılık çağına doğru çıkmıştır. Galois, merhametli, acıyan, seven ve hatta ağır başlı bir çocuk olmakla beraber, babası şerefine düzenlenen toplantılarda ortamın neşesine katılmasını bilir ve konukları eğlendirmek amacıyla şiirler ve karşılıklı konuşma yazıları yazardı. Fakat, beceriksiz, yeteneksiz ve anlayışsız öğretmenlerinin rahatsız etme, canını sıkma ve tedirgin etmeleri, onların sersem ve pek akılsız davranışları yüzünden Galois'nın bu atılımları da çok sürmedi. Onu da hemen körelttiler.

Galois, 1823 yılında on iki yaşında Paris'teki Louis le Grand Lisesine girdi. Lise, kapıları sürgülü ve pencereleri demirli bir hapishaneden farksızdı. 1823 Fransa'sı daha Fransız devrimini unutmamıştı. Yöneticilerin, insanların ve bazı güçlerin tuzakları ve karşı tuzakları, ayaklanmalar ve ihtilal söylentileri sık sık görülen olaylardı. Olaylar tam oturmamış ve huzursuzluklar devam ediyordu. Toplumun bu huzursuzlukları Galois'nın lisesine de yansıyordu. Cizvitlerin yönetimi yeniden ele almasını sağlamak amacıyla lisenin müdürünün planlar hazırlamış olmasından kuşkulanan öğrenciler, kilisede bile okumayı, kabul etmeyerek ayaklandılar. Müdür, öğrenci ailelerine bile haber vermeden suçlu diye kuşkulandığı öğrencileri okuldan kovdu. Galois, bunların içinde değildi. Bulunsa herhalde Galois'nın geleceği için daha hayırlı olurdu. Çünkü, Galois, o güne kadar kanunsuz ve keyfi yönetimin, yalnız kelimesini biliyordu. Artık O, harekete geçmiş, kendisini olayların içinde bulmuştu. Ölünceye kadar da bu iz onda kalacaktır.

Galois, annesinin ona verdiği temel eğitim ve öğretiminin yardımıyla öğrenimini çok iyi bir biçimde yürütüyordu. Böylece, öğrenimine çok iyi başladı. Sınıftaki tüm birincilikleri topladı.

Ertesi yıl 1824 tarihinde Galois'nın hayatında başka bir davranış daha görüldü. Edebiyata ve klasiklere önce uysallıkla çalıştığı halde, şimdi onlar canını sıkmaya, buna karşın matematik dehası uyanmaya başladı. Öğretmenleri sınıfta kalıp bir yıl daha okumasını istediler. Babası karşı koydu. Zavallı Galois, bitmek tükenmek bilmeyen edebiyat, Yunanca ve Latince derslerine yeniden başladı. Orta derecede ve dikkatsiz bir öğrenci olarak tanındı. Son söz yine öğretmenlerinin oldu ve Galois sınıfta kaldı. Ne yazık ki, bu dahi çocuk, zekasının kabul etmediği eski ve onun için anlamsız şeyleri tekrarlamak zorunda kaldı. Yorulduğu ve zevkini kaybettiği için derslerine karşı hiç bir gayret, çaba ve ilgi göstermiyordu. O zaman diğer derslere göre matematiğe çok önem verilmezdi. Matematik dersi bazen yapılır, bazen de hiç yapılmazdı. Galios, kendisinin bir matematikçi olduğunu nereden bilebilirdi?

Galois, düzenli matematik derslerine bu derin sıkıntı yılında başladı. Bu zaman, Legendre'nin güzel geometrisinin moda olduğu bir sürece rastlar. İyi bir öğrenciler bile Legendre'nin bu geometrisini tümüyle anlayabilmek için en az iki yıl uğraşmaları gerektiğine inanıyorlardı. Galois, Legendre'nin geometrisini bir korsan kitabı okur gibi, baştan sona kadar bir nefeste okuyarak bitirdi ve bu kitaba hayran kaldı. Bu kitap, bir işçinin elinden çıkmış bir el kitabı değil de, bir usta elinden çıkmış bir şaheserdi. Bir kere okunması, bir çocuğa en açık biçimde geometriyi öğrenmesini sağlıyordu. Galois'nın cebire karşı tepkisi bambaşka oldu. Cebirden nefret etti. Onun bu tepkisi, onun ruh yapısını bilen için haklı bir gerekçeydi. Çünkü, Galois'yı gayrete ve çalışmaya getirecek Legendre düzeyinde usta bir cebirci yoktu. Cebir, okul kitaplarından başka bir şey değildi. Bu, Galois'ya cebir bilgisinin verilmeyişinden kaynaklanıyordu. Büyük bir matematikçiyi eserleriyle tanımasını öğrendikten sonra, kendi kendine bir yol aramak görevini üstüne aldı. Cebir öğrenmek için çağın büyük matematikçisi Lagrange'a başvurdu. Sonra Abel'i okudu. Bu sırada on dört on beş yaşındaki bir çocuğun olgun matematikçilere özgü yazılmış cebir analizinin şaheserlerini, denklemlerin sayısal çözümlerine ait çalışmaları, analitik fonksiyonlar kuramını ve fonksiyonların diferansiyel hesaplarını birer birer okuyarak yutuyordu. Artık okul ödevleri onun için küçük şeylerdi. Genç dahiye gündelik dersler adi bir iş gibi geliyordu. Gerçek matematik için bu dersler faydasız ve hiçte gerek yoktu.

Kendisinde matematik yeteneğinin olduğunu fark edince, cebirsel analizin büyüklerinin yaptıklarını ve kendi düşündüklerini karşılaştırdı ve ileri atıldı. Annesi bile bunun farkında değildi. Fakat oğlunu biraz garip buluyordu. Lisede öğretmenleri ve arkadaşları üzerinde korku ve öfkeyle karışık garip bir duygu bırakıyordu. Öğretmenleri sabırlı ve iyi insanlardı. Fakat, oldukça dar görüşlü kimselerdi. Yıl başında "Çok uslu ve tatlı, iyi özellikleri bol" bir öğrenci diye sözü edildi. Fakat, Galois'da garip bir halin olduğunu da ekliyorlardı. Bu olay doğrudur. Çünkü, Galois sıradan bir zekaya sahip bir öğrenci değildi. İçine sığacak türde biri olması olanaksızdı. Galois için, Hiçte fena çocuk olmadığı, fakat "orijinal ve acayibin biri, her zaman muhakemeci, mantıkçı" olduğu sözleri de yine o eski kayıtlarda vardır. Arkadaşlarına takılmaktan zevk aldığı da ekleniyordu. Yıl sonundaki kayıtlarda yine, "Garip hallerle arkadaşlarını darılttığı ve karakteri içinde kapanmış bir şeyi olduğu" yazılıyordu. Daha ileri, öğretmenleri onu, "Son derece hırslı ve orijinal bir davranış takınmak" la suçluyorlardı. Buna karşın, bazı öğretmenleri Galois'nın iyi bir öğrenci olduğunu ve özellikle matematikte çok başarılı olduğunu kabul etmişlerdi. Yalnız bir kişi, Galois'nın matematikte olduğu kadar, diğer derslerinde de dikkate değer bir öğrenci olduğunu söylüyordu. Bu iyi niyet karşısında kalan Galois, edebiyat derslerinde de dikkatli olup şansını deneyeceğini söylediyse de, içindeki matematik aşkı hürriyetine kavuşmak için tutuşuyordu.

Galois, on altı yaşında, çok önemli buluşlara hazırlandığı bir sırada matematik öğretmeni Vernier, sanki tavuğun yeni çıkardığı yavrusunu kapacak olan kartaldan korur gibi Galois üzerinde titriyordu. Vernier, Galois'nın yöntemli çalışmasını istiyor, fakat öğrencisi bu öğütleri dinlemiyordu.

Galois, Ecole Polytechnique'in sınavlarına girdi. Sivil ve asker mühendislere dünyanın en iyi matematik ve ilim bilgisi vermek amacıyla ihtilal yasalarına göre Monge tarafından kurulmuş olan bu büyük okul, Galois'yı kendisine fazlasıyla çekiyordu. Bu okulda önce matematik hırsını tatmin edecek, burada matematik alanında kendini gösterecekti. Daha sonra, hürriyet aşkının doyacağını umuyordu. Çünkü, burada büyük kimseler, enerjik ve cesaretli Polytechnique'liler bulunuyordu. Bu okuldan çok şey bekliyordu.

Galois, Polytechnique'in sınavına girdi ve kazanamadı. Bu başarısızlığa sersemce bir haksızlığın neden olduğunu bilen sadece kendisi değildi. Hatta, arkadaşları bile bu başarısızlıkla şaşkına döndüler. Zaten Galois'nın matematik dehasını bilen ve onu takdir eden arkadaşlarıydı. Tüm suçu sınav jürisine yüklediler. O sırada bu okula giren adaylarla ilgili bir dergi çıkaran Terquem, okuyucularına, Galois'nın başarısızlığıyla ilgili tartışmanın henüz kapanmadığını hatırlattı. Bu başarısızlığı ve başka bir yerde, sınav jürisinin akıl erdirilemeyen kararlarını yorumlayan Terquem şunları yazıyordu; "Yüksek zekalı bir aday daha düşük zekalı sınav jürileri tarafından döndürülmüştür. Ben bir barbarım. Çünkü onlar beni anlamıyorlar ". Galois'ya gelince, başarısızlığı onun için öldürücü bir darbe olmuştu. Kendi içine kapandı. Bu sınavın acısını hiç bir zaman unutamadı.

1828 yılında Galois on yedi yaşındaydı. Bu, onun hayatında büyük bir yıl oldu. İlk kez onun dehasını anlayan değerli bir matematik öğretmeniydi. Adından söz edeceğimiz kişi, Louis Paul Emile Richard (1795-1849), Louis le Grand öğretmeniydi. Richard, dürüst bir eğitimciydi. Kendi öz çıkarları için her şeyi uygun gören bu adam, öğrencisinin geleceği söz konusu olunca hiçbir özveriyi esirgemeyen değerli biriydi. Bu sırada bazı matematikçiler de vardı. Öğretmenlik hevesi içinde, eserlerini yayınlaması için onu sıkıştıran dostlarının öğütlerine karşın, kendini tümüyle unuttuğu da olurdu.

Richard, ayağına gelen kısmetin ne olduğunu ilk bakışta anladı. Karşısındaki çocuk, Fransız'ların Abel'iydi. Galois'nın bazı zor problemlere karşı verdiği orijinal çözümleri sınıfta açıklamaktan gurur duyuyor ve bu insan üstü öğrencinin Polytechnique'e sınavsız kabul edilmesini gereken her yerde söylüyordu. Richard, Galois' ya birincilik ödülünü verdi ve raporuna şunları yazdı. "Bu öğrenci, arkadaşlarına göre açık bir üstünlük göstermektedir. Matematiğin yalnız en zor taraflarına çalışmaktadır." Bu söz, gerçeğin tam kendisiydi. Galois, on yedi yaşında, denklemler kuramında her zaman hatırlanacak olan ve sonuçları bir yüzyıldan fazla bir zaman sonra bile tüketilemeyen keşifler yapıyordu. Galois, 1 Mart 1829 günü, sürekli kesirlere ait ilk çalışmasını yayınladı. Bu çalışma, onun ileride başaracağı büyük işler hakkında bir fikir vermemekle beraber, hiç olmazsa, basit ve sıradan bir öğrenci olmadığını ve yaratıcı bir matematikçi olduğunu göstermeye yeterdi.

O sırada, Cauchy Fransız matematikçilerinin başında geliyordu. Pek çok yayını ve keşifleri olan Cauchy, yayın sayısı bakımından Euler ve Cayley'den sonra geliyordu. Cauchy, eserlerini genellikle çabuk ve doğru yazardı. Bazen unutkanlıkları da oluyordu. Fakat, bu kez yaptığı unutkanlığı Abel ve Galois'nın felaketi oldu. Onların canına kıydı. Abel için Cauchy kısmen suçlu kabul edilebilir. Fakat, Galois için affedilmez bir unutkanlığın tek sorumlusudur.

Galois, on yedi yaşına kadar yaptığı buluşların önemlilerini, ileride Akademiye vermeyi düşündüğü bir çalışma için saklamıştı. Cauchy, bu çalışmayı Akademiye sunacağını söz verdiği halde, sonra bu sözü unutmuş ve daha kötüsü bu yazıyı kaybetmişti. Galois, Cauchy'nin bu söz verişini kendisinden bir daha duymadı. Cauchy, aynı davranışı Abel'e de göstermişti. Cauchy'nin bu tür davranışının kasıtlı olup olmadığını bilemiyoruz. Fakat, matematik tarihi için sadece onu suçlayabiliriz. Çünkü, Cauchy'nin bu davranışı, genç Galois için bir hayal kırıklığı oldu. Akademi üyelerine karşı beslediği hırçın nefreti tutuşturan ve içinde yaşamaya zorunlu tutulduğu budala topluma karşı vahşi bir kin şeklinde soysuzlaşmaya kadar vardıran bir dizi benzer felaketlerin ilki oldu.

Bu kadar açıkça dehası görülen genci, öğretmenleri anlamıyor, onun huzurla keşiflerini hazırlaması için bir ortam hazırlamadıkları gibi, huzurunu bozuyorlar ve boşuna verilen ödevlerle oyalayarak çileden çıkarıyorlardı. Uzun ve sıkıcı tektirler, ardı arkası kesilmeyen cezalarla da onu isyana ve karşı gelmelere yöneltiyordu. O yine bunlara bir yerde katlanıyordu. Kendisini büyük matematikçi olmaya yöneltiyor ve bu amaçla çalışıyordu.

Galois, on sekiz yaşında genç bir delikanlıyken, ikinci darbe kafasına indi. Galois, ikinci kez Polytechnique'e başvurdu. Sonuç yine beklendiği gibi çıktı. Galois sınavı kazanamadı. Şansını son bir Kez daha denemişti. Okulun kapısı artık kendisine sürekli kapanıyordu. Galois'yı sınav yapan kimseler gerçekten de ondan çok daha geride kimselerdi.

Galois'nın bu sınavı dillere destan oldu. Her yerde bu sınavın sonucu konuşuluyor ve bu sınavdan söz ediliyordu. İşin duygusal yanı böyleydi. Fakat, olanlar zavallı Galois'ya olmuştu. Galois'nın en büyük özelliği, hemen hemen tüm hesapları ve hesaplamaları zihninden yapar ve sonucu söylerdi. Kalem, kağıt, tebeşir ve karatahta onun canını sıkıyordu. Keskin bir zekası ve düşünme yeteneği vardı. Fakat ne yazık ki, bu kez silgi ve tebeşiri özel bir amaçla kullandı. Sözlü sınavda jüri üyelerinden biri, matematik bir güçlük üzerinde onunla tartışmaya girişmek istedi. Jüri üyesi haksızdı. Fakat, direndi. Yetkili yerde de oydu. Okula kabul edilmemek düşüncesinin verdiği bir öfke ve ümitsizlik bunalımıyla ve sıkıntıyla silgiyi jüri üyesinin kafasına fırlattı ve ... rezalet koptu. Yine olan zavallı Galois'ya oldu.

Galois'nın babasının acı ölümü ona son darbeyi indirdi. Bourg La Reine'nin belediye başkanı olması dolayısıyla, halkı papazlara karşı koruyordu. İhtiyar Galois, bu yüzden papazların çevirdiği dalaverelere hedef oldu. 1827 yılının gürültülü seçimlerinden sonra, bir papaz ihtiyar belediye başkanının şahsına karşı haysiyet kırıcı bir savaş açtı. İhtiyar adamın şiire karşı olan yeteneğini kötüye kullanarak, belediye başkanının imzasıyla Galois ailesinin birisine hitaben kirli ve pis mısralar bulunduran bir şiir yazdı ve bunları halk arasında dolaştırdı. Tam anlamıyla namuslu bir adam olan Galois'nın babası kendine eziyet etmek merakına tutuldu. Bir gün, karısının evde bulunmadığı bir sırada Paris'ten kaçtı. Oğlunun öğrenimini gördüğü lisenin iki adım ötesinde bir apartmanda intihar etti. Cenaze töreninde bazı karışıklıklar çıktı. Ona kızan bazı vatandaşlar cenazeye taş attılar. Bir papaz alnından yaralandı. Galois, babasının tabutunun görülmemiş bir patırdı içinde mezara indirilişine tanık oldu. O zamandan beri, her yerde nefret ettiği haksızlığın varlığından şüphelenerek, hiç bir zaman hiçbir yerde iyiliği göremedi.

Galois, Polyteohnique'teki ikinci sınavındaki başarısızlığından sonra, öğretmen olmak için Ecole Normale döndü. Yıl sonu sınavlarına kendi kendine çalışarak hazırlandı. Sınav jürilerinin kayıtları dikkate değerdir. Matematik ve fizik sınavlarından pekiyi notunu aldı. Son sözlü sınavında hakkında yazılmış şöyle bir not vardır; "Bu öğrenci fikir ve söylemek istediklerini her zaman açık olarak ifade edememektedir. Fakat zekidir. Dikkate değer araştırıcı bir zekası vardır." Edebiyat dersinde en kötü yanıt veren öğrenci diye bir kayıt vardır.

Galois, 1830 yılı şubatında on dokuz yaşında kesin olarak üniversiteye kabul edildi. Çalışmak için bir köşeye çekildi ve çalışmalarıyla kendisini öğretmenlerine gösterdi. O yıl yeni konular üzerinde üç tane çalışma yaptı. Bu çalışmaları, cebirsel denklemler kuramı üzerinde büyük bir ilerlemeydi. Bu çalışmalarında, onun büyük kuramının bazı izleri görülür. Bu buluşlarını ve başka sonuçlarını da birleştirerek, İlimler Akademisine sundu. Bu eser, ancak çağın ileri gelen matematikçilerinin izleyip anlayabileceği düzeydeydi. En yetkili kimselerin fikirlerine göre, bu çalışma ödülü kazanacak tek eserdi.

Galois'nın bu yazısı Akademinin katipliğine geldi. Katip yazıyı incelemek üzere evine götürdü. Fakat, yazıyı okumadan öldü. Katibin kağıtları düzenlenirken Galois'nın bu çalışmasına rastlanılamadı. Galois da bir daha bu yazıdan söz edildiğini duymadı. Galois'yı avutacak başka bir söz daha yoktu. Koca deha, kötü bir düzen, anlayışsız insanlar, Cauchy'nin önem vermemesi ve tekrar eden kötü sonuçlar içinde yok olup gitmeyle karşı karşıyaydı. Bu olaylar, Galois'nın çökmüş ve kokmuş düzene karşı nefretini arttırıyordu.

İlk ihtilal gösterileri Galois'yı sevinç içinde bıraktı. Arkadaşlarını bu olaylara sokmak istediyse de, onlar çekimser kaldılar. Deneyimli müdür, öğrencilerden dışarı çıkmayacaklarına şerefleri üzerine söz aldı. Galois söz vermeyi kabul etmedi. Müdür, Galois'ya ertesi güne kadar beklemesini rica etti. Müdürün davranışı incelik ve sağduyudan uzak olduğunu kısa bir konuşmasıyla kanıtladı. Galois, öfkelenerek gece kaçmaya çalıştı. Duvar oldukça yüksekti. 1830 yılının son ayları oldukça karışık geçti. Galois, harekete geçmek için arkadaşlarına mektup yazdı. Arkadaşları Galois'yı desteklemediler. Bunun üzerine Galois da okuldan kovuldu.

Galois, parasız kaldığı için haftalık özel yüksek cebir dersleri vermek için ilan verdiyse de öğrenci bulamadı. Bu nedenle bir süre matematiği bıraktı. Halkın Dostları adı altında kurulan koruma kıtasının topçu kısmına gönüllü olarak girdi. Son bir ümitle ve Poisson'un önerisi üzerine, bugün Galois kuramı adı ile bilinen ve anılan ünlü çalışmasını İlimler Akademisine yolladı. Poisson raportördü. Ona göre çalışması anlaşılacak gibi değildi. Bu çalışmayı anlayabilmek için ne kadar zaman harcadığını da söylemiyordu. Gerçekten, Galois'nın kuramının anlaşılabilmesi için çok ileri düzeyde cebir bilgisi gerekmektedir. Bugün bu gerçek yine aynı düzeyini korumaktadır. O zaman, Galois' nın yaptığı bu çalışmayı anlayan çıkmamıştı. Galois artık kendini ihtilalci politikaya verdi.
9 Mayıs 1831 gecesi, iki yüz kadar cumhuriyetçi, Kralın, Galois' nın gönüllü olarak girdiği topçu kıtasının dağıtılması için imzaladığı bildiriye karşı koymak için bir ziyafette toplandılar. İhtilalci ve tahrik edici bir hava esiyordu. Galois, bir elinde kadeh ve bir elinde çakı ile ayağa kalktı ve kadehini Kral Louis Philippe'e diye kaldırdı. Bu hareketi yanlış anlamlara çeken arkadaşları onu ıslığa tuttular. Çakıyı da görünce, çakıyı Kralın hayatına karşı bir tehdit anlamına çektiler ve bağırarak alkışladılar. Galois, o anın kahramanıydı. Alkışlar kesilmiyordu. Topçular yürüyüş yapmak için dışarı çıktılar. Ertesi gün, Galois evinden alınarak tutuklandı. Sainte Pelagie'deki hapishaneye kapatıldı.

Galois'nın yakın taraftarları usta ve kurnaz bir avukat buldular. Bu avukat, sanığın aslında Louis Philippe'e, eğer "ihanet ederse" dediğini ispat etmeye çalıştı. Çakıya gelince, onu da açıklamada güçlük yoktu. Çünkü, Galois o sırada yediği pilicini kesmekle meşguldü. Yanında bulunanlar da, ıslıklara boğulan cümlenin sonunu işittikleri üzerine yemin ettiler. Galois bunu kabul etmediyse de, aile sahibi ve namuslu bir adam olan yargıç, sanığa, bu davranışı ile durumu düzeltemeyeceğini söyledi ve onu susturdu. Savunma çok ince hazırlanmıştı. Mahkeme heyeti de sanığın gençliğine acıdı ve on dakika aradan sonra Galois'nın suç işlemediğine karar verdi.

Galois, hürriyetini uzun zaman yine koruyamadı. Bir ay geçmeden 14 Temmuz 1831 günü bir tedbir olarak tutuklandı. Çünkü bu sırada cumhuriyetçiler bir gösteri yapmaya hazırlanıyordu. Hükümet bu hareketi büyüterek tebliğ halinde yayınlıyordu. Galois'nın ihtilal yapmasına engel olmuşlardı. Polisin onu yargılaması için bir gerekçe bulması güçtü. Tutuklandığında tepeden tırnağa kadar silahlıydı ama, polise hiç bir direnme göstermemişti. İki aylık bir bekleyişten sonra, bir gerekçe bulundu. Dağıtılmış topçu kıtasının resmi üniformasını taşıdığı için yargılandı. Bir arkadaşı üç ay ve kendisi de altı ay hapis cezası giydi. 29 Nisan 1832 gününe kadar hapishanede kaldı. Kız kardeşi, ağabeyinin geçirdiği bunca güneşsiz günden sonra sanki elli yıl daha çöktüğünü söylerdi.

O zamanlar hapishanelerde hafif bir disiplin vardı. Tutuklular ya avluda dolaşırlar ya da kantinde içerlerdi. Asık yüzlü ve daima düşünen Galois, içicilerin alayı ile karşı karşıya geldi. Bir tahrik sonucu bir şişe rakıyı bir solukta içti. İyi bir dostu ona ayılıncaya kadar baktı. Ne yaptığının farkına varınca da utandı. Galois bu hapishaneden de çıktı.

1832 yılında kolera salgını baş gösterdi. Galois'yı koleradan korunması gerekçesiyle 16 Mayıs 1832 günü hastaneye kapattılar. Sanki, Louis Philippe'in hayatı ile oynamış olan bu önemli siyasi kolera salgınına karşı bırakılmayacak kadar kıymetliydi. Hastaneye kapatılmıştı ama, dışarıdan gelenlerle görüşmek olanağı oldukça fazlaydı. Böylece, hayatında tek bir aşk olayı da geçirmiş oldu. Her şeyde olduğu gibi, bunda da bir felaketle karşılaştı. Aşağılık oynak bir kadın aklını çeldi. Sonunda Galois, aşktan, kadından ve kendinden iğrendi. Ona bağlı dostu Auguste Chevalier'ye şunları yazıyordu. "Dokunaklı cümlelerle dolu mektubun bana biraz rahatlık getirdi. Fakat geçirdiğim bu kadar şiddetli heyecanların izini nasıl yok etmeli? ... Her şeyde hayal kırıklığına uğradım. Hatta aşkta, şan ve şerefte bile ..." Mektup 25 Mayıs 1832 tarihliydi. Dört gün sonra Galois serbest bırakıldı. Dinlenmek ve biraz düşünmek için bir yazlığa gitmeye karar verdi.

Galois'nın 29 Mayıs 1832 günü başından geçen bir olay hakkında tam kesin bir bilgi sahibi değiliz. Bu olay hakkında iki mektubunda yazılanlar gerçek diye kabul edilen şeyleri akla getirmektedir. Galois, serbest bırakıldıktan sonra, siyasi düşmanlarıyla çekişmeye girişti. O zaman vatan severler düello (silahlı kavga) etmeye hevesliydiler. Zavallı Galois, bir şeref meselesi veya bir aşağılık kadın yüzünden düello etmek zorunda kaldı.
30 Mayıs 1832 günü şafak sökerken, Galois hasmıyla şeref meydanında karşılaştı. Düello tabancayla yirmi beş adım uzaklıktan yapılacaktı. Galois karnından vurularak düştü. Kör şans yine burada da onu buldu. Yörede doktor yoktu. Onu düştüğü yerde bıraktılar. Sabah saat dokuz sıralarında oradan geçen bir köylü tarafından Cochin hastanesine götürüldü. Galois öleceğini anladı. Karnındaki karın zarı iltihaplandı. Bu peritonit meydana çıkmazdan önce henüz aklı başındayken papazın son hizmetlerini kabul etmedi. Acaba babasının cenaze törenini mi hatırlamıştı? Aileden tek haberdar edilen küçük kız kardeşi göz yaşları içinde koşarak yetişti. Galois, tüm kuvvetini toplayarak onu teselli etti.

Galois, 31 Mayıs 1832 günü yirmi bir yaşında, sabahın erken saatinde öldü. Güneydeki mezarlığın fakirlerin gömüldüğü çukura gömüldü. Bugün, Evariste Galois'dan hiç bir işaret ve hiç bir kırık taş bile kalmamıştır. Onun kalan ve ölmez tek anıtı, hepsi altmış sayfa tutan kendi el yazması olan Galois kuramıdır.

Galois 28 Mayıs 1832 tarihli, "Tüm cumhuriyetçilere" başlıklı mektubunda şunları yazıyor:

"Ülkem uğruna ölmek olanağını bulamadığım için bana gücenmemelerini dostlarımdan rica ediyorum. Alçak bir aşiftenin ve bunun aldattığı iki kişinin kurbanı olarak gidiyorum. Hayatım sefil bir dedikodu içinde tükenecek... Gerçeği soğuk kanlılıkla dinleyecek durumda bulunmayanlara bu uğursuz gerçeği söylediğime pişmanım. Fakat, ne de olsa doğruyu söyledim. Mezara, yalanlarla lekelenmemiş bir vicdan, vatansever kanın temiz vicdanını götürüyorum. Allahaısmarladık! Halkın iyiliği için ne kadar yaşamayı isterdim... Beni öldürenleri affediyorum. Çünkü, iyi niyetli insanlardı."

Galois, adı belirtilmeyen dostlara yazdığı başka bir mektupta şöyle diyor:
"İki vatansever beni düelloya davet etti. Bunu reddetmek benim için olanaksızdı. Ne sana, ne ona haber vermediğim için özür dilerim. Çünkü, rakiplerim hiç bir vatansevere haber vermemem için benden şerefim üzerine söz istemişlerdi. Göreviniz çok basittir. İstemeyerek çarpıştığımı, yani her uzlaşma çaresine başvurduktan sonra çarpışmaya zorunlu olduğumu ispat ediniz. Yalan söylemek, hatta bu kadar önemsiz bir şey için yalan söylemek hiç elimden gelir mi, söylersiniz. Kaderim, vatanın adımı öğrenmesi için bana yaşamayı nasip etmediğinden hatıramı koruyunuz. Dostunuz olarak ölüyorum."

E. Galois:

Galois'nın yazdığı son sözler işte bunlardır. Öleceğini anlayan Galois bu gece son arzularını, vasiyetnamesini, ateşler içinde kağıda yazmakla geçirdi. Daha önce kafasında kurduğu büyük konuları aklında kaldığı kadarıyla topluyor ve kağıda döküyordu. Arasıra yazıyı kesiyor ve kenara birşeyler karalıyordu. "Vakit yok, vakit yok!" Yine çalışmasının devamını kötü bir yazıyla karalamaya koyuluyordu. Bu son ümitsizlik saatleri sırasında, gün ağarmadan önce yazdıkları, daha sonra gelecek matematikçileri, yüzlerce yıl heyecan içinde nefes nefese bırakacaktır. Matematikçileri uzun yıllar üzmüş olan problemin kesin çözümünü vermişti. Bir denklem hangi koşullarda çözülebilir? Sonunda bu da yaptıklarının bir parçasıydı. Bu büyük eserde, Galois gruplar kuramını parlak bir başarı ile kullanmıştır. Bugün, bu önemli ve oldukça soyut olan kuramın büyük öncüsü ve kurucusu ölmez Galois'dır.

Çılgınca yazılmış bir mektuptan başka, Galois, ilmi durumunu yerine getirecek olan şahısa, İlimler Akademisine sunulmak üzere kaleme aldığı bazı yazıları emanet etti. On dört yıl sonra, 1846 yılında Joseph Liouville, bu yazılardan bazılarını "Teorik ve Pratik Matematik Dergisi"nde yayınladı. Kendisi de orijinal ve seçkin bir matematikçi olan Liouville bu yayının girişinde şunları yazıyor.
"Evariste Galois'nın çalışmalarının temel amacı, denklemlerin köklerle çözülebilmesi koşullarıdır. Galois burada, dereceleri birer asal sayı olan denklemlere ayrıntılı bir biçimde uyguladığı genel bir kuramın temellerini atıyor. Daha on altı yaşından beri ve yeteneklerinin M. Richard adında çok iyi bir öğretmen tarafından desteklendiği Louis le Grand lisesinin sıralarında, Galois bu güç problemle uğraşmıştı." Liouville daha sonra bu çalışmanın Akademiye gönderildiğini ve raportörlerin çalışmanın açık olmadığını belirterek kabul etmediklerini anlatır. "Aşırı derecede bir kısa yazma hevesi ve oldukça kapalı yazması anlamayı oldukça zorlaştırmaktadır. Eseri inceledim ve kullandığı yöntemin tümüyle doğru olduğuna inandım. Ufak tefek bazı eksikliklerini tamamladım. Çalışmamın sonucunu görünce de büyük bir zevk duydum" diyordu.

Galois, son arzularını dostu Auguste Chevalier'e yazdı. "Analizde bazı yeni sonuçlar buldum... Yaptıklarımın doğruluğundan şüphem yok. Jacobi veya Gauss'tan, bu teoremlerin doğruluğu hakkında değil de, bu teoremlerin önemleri üstündeki düşüncelerini söylemelerini açıkça rica edersin. Eğer umduğum gibi çıkarsa, bazı kimselerin bu karışık örgüyü kendilerine kullanmaları için sökmeleri kalır. Seni hasretle kucaklarım."

Zavallı Galois, hala kendisinin anlaşılması için nasıl da çırpınıyordu. Jacobi cömert ve şerefli bir kimseydi. Ya Gauss ne diyecekti? Daha önce Abel'e ne demişti? Cauchy veya Labatchewsky hakkında ne söylemeyi unutmuştu? Bu kadar acı bir derse karşın, Galois hala boş ümitlere kapılıyordu. Bu ümitleri ancak ölümünden tam on dört yıl geçtikten sonra Liouville tarafından anlaşılacak ve eseri yayınlanacaktı.

Böylece, dahi bir matematikçi çocuğun acı yaşam öyküsünü ve anlaşılmadan nasıl yok edildiğini gördük. Tüm öğretmenler, anneler ve babalar, karşınızdaki öğrencilerin her zaman bir Galois olabileceğini unutmayınız.
 
Godfrey Hardy (1877 - 1947)

Bir İngiliz matematikçisi olan Godfrey Hardy, 1877 yılında Cranleigh, Surrey'de doğdu. Oxford Üniversitesinde geometri profesörü oldu. Sonra, yaşamının büyük bir kısmını Cambridge Üniversitesinde matematik dersleri okutmakla geçirdi. Geniş ve çeşitli olan eserleri genellikle toplamalı veya analitik sayılar kuramıyla ilgilidir. Eserlerinde araştırmalara veya saf analiz ve fonksiyonlar kuramıyla ilgili problemlere rastlanırsa da, bunlar yine az çok sayılar kuramı üstüne yaptığı çalışmayla ilgilidir. Aynı zamanda öğrenim üstüne, bugün klasikleşmiş bazı eserleri yayınlandı. Ayrıca, "Cambridge Tracts" yayınlarını yönetti. Hardy, olağanüstü etkisi ve ünüyle, İngiliz matematik okulunun en seçkin temsilcilerinden biri olarak kabul edilir. 1947 yılında Cambridge'de öldü.
 
Hilbert (1862 - 1943)

Bir Alman matematikçisi olan David Hilbert, 1862 yılında Königsberg'de doğdu. 1895 ile 1929 yılları arasında Göttingen Üniversitesinde profesörlük yaptı. Yirminci yüzyılın başlarında, Alman matematik okulunun önderi sayılır. 1897 yılında cisim kavramını ve cebirsel sayılar cisminin kuramını kurdu. 1890 yıllarındaki ilk çalışmaları sırasında, cebirsel geometri ve modern cebirde önemli bir rol oynayan çokterimli idealleri kuramının temellerini atarak, invaryantlar kuramının temel kanunlarını ortaya koymayı başardı. 1899 yılında, geometrinin temelleri üstüne araştırmalarının bit sentezi olan "Geometrinin Temelleri" adlı eserini yayınladı. Bu, matematiğin çeşitli bölümlerinde aksiyomlaştırma amacına yönelen birçok verimli çalışmaya yol açtı. Somut görüntülere başvurmaktan kaçınan Hilbert, noktalar, doğrular ve düzlemler diye adlandırdığı "Üç nesne sistemini" matematiğe soktu. Ne oldukları kesin olarak gösterilmeyen bu nesneler, beş grupta toplanmış yirmi bir aksiyomla açıklanan bazı ilişkiler ortaya koyar. Ait olma, sıra, eşitlik veya denklik, paralellik ve süreklilik aksiyomu bunlardandır. Bundan sonra, aksiyomlardan birinin veya öbürünün doğrulanmadığı geometriler kurdu. Temel terimleri kendilerine aksiyomlarla yüklenen özelliklerden başka özelikleri bulunmayan mantıksal varlıklar olarak ele aldı. Klasik matematiği savunmak ve ondaki apaçıklığı göstermek için Brouwer ile giriştiği tartışmalar, matematikte geniş biçimli incelemelere yol açtı. 1943 yılında Göttingen'de öldü.
 
Gauss (1777 - 1855)

Alman astronomu, matematikçisi ve fizikçisidir. Daha çocukluğunda, erken gelişmiş zekası, matematiğe karşı zekasıyla sivrildi ve Brounseweig dükünün ilgisini çekti. Dük, okul masraflarını üzerine alarak O' nu Göttingen Üniversitesine gönderdi. Henüz 16 yaşındayken Herschel'in 1781 de keşfettiği Uranüs gezegeninin yörünge elemanlarını hesaplayarak, Yer'in bir noktasından yapılan ölçülerle, bu gezegenin yörünge elemanlarını bulmaya yarayan ve günümüzde hala kullanılan bir metot ortaya koydu. 1798 de Helmesdt'e yaptığı bir inceleme gezisinden sonra, Braunschweig'a döndü ve birkaç yıl içinde kendisini büyük matematikçiler sırasına koyacak bir seri çalışma raporu yayımladı.

Sayılar üzerine incelemeleri topladığı Disqvisitiones Arithmetice'de (Aritmetik Araştırmalara) (1805), eşitlikleri, ikinci dereceden şekilleri, serilerin yakınsaklığını v.b. ele aldı. Piazzi tarafından 1810 da, küçük gezen Cerez'in keşfinden sonra Gauss, çeşitli gökmekaniği araştırmaları yaptı, hayatının sonuna kadar bağlı kalacağı Göttingen rasathanesine müdür oldu (1807) .Theoria Motus Corporum Coelestium İn Sectionibus Conicis Solem Ambientium (Konik kesitIi ? gökcisimlerinin güneş çevresindeki hareket kuramı) (1808) adlı ünlü eserini yazd1. Legendre ile hemen aynı zamanda düşündüğü ve daha önce 1797 de yararlandığı ?- en küçük kareler metodundan (1821) başka, yanılmalar teorisi ve iki terimli denklemlerin çözümü için genel bir metot buldu; uygun-tasvir üzerine araştırmalar, yüzeylerin eğriliği ve Disqvisitiones Generales Carca Sperficien Curvas'ta (eğri yüzeyler üzerine genel araştırmalar) (1827) , ispat ettiği ünlü teoremi de yazmak gerekir. Bu teoreme göre, bükülebilen fakat uzatılamayan bir yüzeyin eğriliği, yani eğriliklerinin çarpımı değişmez.

Göttingen ile Altona arasındaki meridyen yayının ölçülmesi sırasında (1821,1824), Gussu, geodezi çalışmalarında ışıklı işaretler verebilmek için, kendi adını taşıyan Helyotropu tasarladı. Optik alanında, eksene yakın ışık ışınları için düzenlenmiş merkezi optik sistemlerinin genel teorisini kurdu. Elektrikle özelIikle magnetizma ile ilgilendi, bu alanda magnetometreyi icat etti. Ve Resultate Aus Den Beabochtungen Des Manetischen Vereins (Yer magnetizmasının genel kuramı) (1839), adlı eserinde, magnetizmanın, matematik teorisini formülleştirdi. Suclides'ci olmayan hiperbolik geometrinin keşfinde, bu konuda hiç bir şey yayımlamamış olmakla birlikte, Gauss, Balyai ve Labocewsky'den önce çalışmalar yapmış ve başarı sağlamıştı.
 
Laplace (1749 - 1827)

"Doğanın tüm olayları birkaç değişmeyen kanunun matematik sonuçlandır" diyen Marquis Pierre-Simon de Laplace, 23 Mart 1749 günü bir köylü çocuğu olarak dünyaya geldi. Ailesi, Fransa'nın Calvados ilinin Beaumont-en-Auge Kasabasında yaşıyordu. Laplace'ın ilk çocukluk yılları hakkında çok az şeyler biliniyor. Onun çocukluğunu ve gençliğini saran karanlık yılları, kendini Beğenen davranışlarından ileri geliyordu. Kökeninin fakir bir köylüden gelişi onun yüzünü kızartır ve sürekli onu gizlemek için elinden geleni yapardı. Kısaca, bir köylü çocuğu olarak doğmadı ve kendini beğenen birisi olarak ölmedi cümlesi ile yaşam öyküsü özetlenebilir. Her ne duyguysa, Laplace köylü olması ve ailesinin fakir olmasından bir aşağılık duyardı. Tüm yaşamı boyunca bu duygu ve düşünceden kendisini kurtaramadı. Bu da onun zayıf bir yanıydı.

Laplace, ilk yeteneğini köy okulunda gösterdi. Bu başarısı zengin komşularının sıcak dikkatini çekti. Zengin komşularını görmesi belki yukarıda sözünü ettiğimiz duyguları daha küçük çocukken şuur altına alıp baskı kurmuş olabilir düşüncesi akla gelmektedir. İlk başarılarını, teolojik tartışmalarda elde ettiği söylenir.

Laplace, kendisini çok erken matematiğe verdi. O zaman Beaumont'ta askeri bir okul vardı. Laplace bu okula devam ediyordu. Söylendiğine göre, Laplace sonraları bu okulda bir süre matematik dersleri okutmuştur. Yine bir söylentiye göre, onun matematik yeteneğinden çok daha fazla hafıza yeteneğinin olduğu kanaati vardır. Bundan dolayı, Laplace on sekiz yaşına gelince zengin koruyucularının tavsiye mektuplarıyla Paris'in yolunu tuttu. Kendisinin yüksek yeteneğini biliyor, fakat bunda hiç şişme ve bir abartma göstermiyordu. Genç Laplace, kendine tam bir güven içinde Paris'e matematik dünyasını fethetmek için geldi.

Paris'te doğru d'Alembert'in evine gitti. Tavsiye mektuplarını gönderdi. Fakat kabul edilmedi. D'Alembert, büyük ve kuvvetli kimselerin önerilerinden başka bir varlıkları olmayan kimselerle uğraşmıyordu. Laplace, övmeye değer bir anlayışla her şeyi hissetti. Eve döndü ve d'Alembert'e mekaniğin temel kuralları üzerine bir mektup yazdı. Böylece, oynadığı oyunda başarılı olmuştu. D'Alembert'in onu görmek için gönderdiği çağrı yazısında şöyle yazıyordu. "Bayım, görüyorsunuz ki öneri mektuplarına hiç değer vermiyorum. Sizin bu tür övgü mektuplarına hiç gereksinmeniz yok. Siz kendi kendinizi daha iyi tanıttınız. Bu bana yeter. Size yardım etmek bana bir borç olsun." Birkaç gün sonra Laplace, d'Alembert'in sayesinde Paris'teki askeri okula matematik öğretmeni olarak atandı. İşte bu sırada Laplace, Newton'un genel çekim kanununun güneş sistemine uygulaması adlı büyük eserini verdi.

Astronom matematikçi olduğu için, kendisine Fransız Newton'u denmiştir. Olasılıklar kuramının kurucusu gözüyle bakılabilir. "Bildiklerimiz çok değil, bilmediklerimiz çoktur" sözüyle alçak gönüllülüğünü göstermiştir. Matematiğe önem vermediğini, şöhret ve ün için değil de kendi arzularını yenmek için matematikle uğraştığını söyler. Dahi kimselerin buluşlarını veya yaşayışlarını incelemek ve kendisini onların yerine koyarak engelleri aşmak düşüncesindedir.
Yaptığı çalışmaların tümünün kendisine ait olduğunu ileri sürer. Bu söz doğru değildir. Örneğin, yazdığı "Gök Mekaniği" adlı şaheserinde, gelecek kuşaklara bunu, ben yarattım gibi bir izlenimi vermeyi ustalıkla kullanmıştır. Diğer matematikçilerden aldıklarına kaynak vermez, kendine yarayan ve dışarıdan aldığı şeyleri kendine mal etmeyi çok kurnazca becerirdi. Gök Mekaniği için gereken analiz bilgilerini Legendre'den almış ve adını bile vermemiştir. Yalnız Newton'un adı geçer.

Laplace, Lagrange'da değinilen üç cisim problemini güneş sistemi için düşündü. Newton'un çekim kanununu Güneş sistemine uyguladı. Gezegenlerin hareketlerinin Güneş tarafından belirlendiğini, devirli küçük değişiklikler hariç, gezegenlerin Güneşe olan uzaklıklarının değişmediğini ispatladı. O zaman yirmi dört yaşında olan Laplace için tarih 1773 yıllarını gösteriyordu. Bu başarısından dolayı Paris İlimler Akademisine üye seçildi. Yaşamının ve meslek hayatının ilk şerefini ve ödülünü almış oluyordu. Bulduğu matematik sonuçlarının büyük birçoğunu astronomide kullanmak için elde etti. Sayılar kuramı üzerinde bir süre çalıştı ve onu kısa bir zaman sonra bıraktı. Olasılıklar kuramı üzerinde çalışması yine onu astronomide kullanmasından kaynaklandı. Gök Mekaniği adlı yapıtı, yirmi altı yıllık, bir zaman sürecinde parça parça olarak yayınlanmıştır. Gezegenlerin hareketleri, şekilleri, gel-git olaylarını inceleyen ilk iki cilt, 1799 yılında çıktı. 1802 ve 1805 yıllarında iki cilt ve 1823 ile 1825 yılları arasında da beşinci cildi yayınlandı. Yalnız, bu eserlerde matematik kısımları pek açıklanmıyor ve yorumlardan da kaçınılıyordu. Hatta, matematik hesaplar için, "Kolayca görülür" deyimi kullanılıyordu. Aslında, bu kolayca görülür deyimi ters bir anlam da taşıyordu. Kendisi bile bu kolayca görülür dediği kısımları günlerce uğraşarak çözüyordu. Okuyucuları ve öğrencileri daha sonra bu deyim üzerinde haftalarca uğraşacaklarını bildiklerinden, homurdanmayı adet edinmişlerdi.
 
Lebesgue (1875 - 1941)

Bir Fransız matematikçisi olan Henri Leon Lebesgue, Fransa'da Beauvais kentinde 28 Haziran 1875 günü doğdu. Çok iyi bir öğrenim gördü ve 1897 yılında Paris Üniversitesinden Ph.D. diplomasını aldı. Bu doktorası üzerinde bir söylenti de vardır. Dirichlet fonksiyonunun Riemann anlamında intergalinin olmadığı o çağlarda biliniyordu. Hatırlanırsa, rasyonel noktalarda bir ve irrasyonel noktalarda sıfır değerini alan fonksiyon, matematikte Dirichlet fonksiyonu adıyla bilinir. Lebesgue, bu Dirichlet fonksiyonunu integralleyebilecek bir integral tanımı getirebilir miyim diye düşündü. Riemann integralinin tersine, bölüntüyü x ekseni üzerinde değil de y ekseni üzerinde aldı. Bunda başarılı oldu. Bu getirdiği integral yöntemine de Lebesgue integrali adını verdi. Böylece, analize yeni ufuklar açtı.

1906 ile 1910 yılları arasında Potiers Fen Fakültesinde öğretim yaşamını sürdürdü. 1910 ile 1919 yılları arasında öğretim görevliliği yaptı. 1921 ile 1931 yılları arasında Paris Fen Fakültesinde çalıştı.

Lebesgue, Fransa'da matematik alanında büyük bir çağın en seçkin önderlerindendi. Analiz çalışmalarının hemen hemen tümü gerçel değişkenli fonksiyonlar kuramıyla ilgilidir. Özellikle, integral kavramının Lebesgue integrali denilen bir genişlemesini ona borçluyuz. Lebesgue'in integral tanımına göre, bazı fonksiyonların Riemann anlamında integrali olmadığı halde, Lebesgue integrali vardır. Buna en güzel örnekte, ünlü Dirichlet fonksiyonudur. İntegralin bu genelleştirilmiş kavramı matematikte en çok uygulama alanı bulan bir yenilik olmuştur. Çağımızda da halen bu kuram tüm canlılığıyla yürütülmektedir. Bu kuram artık analizin temel dersidir. Analizci herkes önce bu konuları öğrenir. İleri araştırmalar için gereklidir.

Şüphesiz, Lebesgue integralinin anlaşılması hemen kolay bir kuram da değildir. Bunun için önce Lebesgue ölçümü kuramını geliştirmek gerekir. Bu nedenle, Lebesgue önce Lebesgue ölçümünü geliştirdi. Burada, kümelerin ölçülebilmeleri ve fonksiyonların ölçülebilmeleri kavramlarını getirdi. Bundan sonra, kendi adıyla anılan ünlü Lebesgue integralini oluşturdu. Bu konuda hazırladığı teze, jüri üyelerinin önce itiraz ettiği, sonra doktora yöneticisinin ricasıyla, "Bu öğrenci çok zeki ve bana düşündürücü sorular sorar", diyerek onları razı ettiği söylenir. Bu söylenti doğru da olsa yanlışta olsa; Lebesgue tarafından bu çalışma yayınlandığında, bu buluş, tüm dünyada bir bomba gibi patlamış ve tüm matematikçileri bu sahada çalışmaya ve yeni yeni buluşları gerçekleştirmeye yöneltmiştir. Bu kuramın çok geniş bir biçimde meyveleri alınmıştır. Oldukça uygulama alanları bulmuş ve sürekli genelleştirmeleri yapılmıştır. Artık bu kuram analizin kaçınılmaz bir aleti durumuna getirilmiştir. Bunun ötesinde, matematiğin diğer dallarına da yeni ufuklar açarak, onların gelişmesini sağlamıştır.
Lebesgue, ünlü olduktan sonra, birçok üniversitede dersler vermiştir. 1921 yılında College de France'ta profesör olmuştur. Lebesgue'in çok parlak ve yaratıcı bir matematik kafası vardır. Ülkesi içinde ve tüm dünyada oldukça şereflendirilmiş, ödüllendirilmiş ve çok mesut bir evlilik yapmış biriydi. Bugün, integral kuramının kurucusu olarak tüm dünya onu kabul eder. Bu kuramda ve analizde çok sayıda buluşları vardır. Çalışmalarının tüm ürünlerini almış ve kuramının tutulup ne kadar ileri götürüldüğünü gören mutlu matematikçilerden biridir. 26 Temmuz 1941 günü altmış altı yaşındayken Paris'te öldü.

"Olasılıklar Hesabı" adlı kitabının üçüncü basımı 1820 yılında çıktı. Astronom ve matematikçi olduğu kadar çok üstün bir yazma tekniğine de sahipti. Bu yüzden, kolayca görülür deyimi dışında onun eserleri de eksiksizdi.

On sekizinci yüzyılda, iki Fransız Lagrange ve Laplace birçok yönüyle zıttılar. Laplace, fizik, matematik grubuna; Lagrange ise kuramsal matematik grubuna giriyordu. Lagrange, bütün bunların matematikten başka bir şey olmadığını söylüyordu. Laplace ise, matematiği kullanılan bir alet gibi görüyordu. Aslında Laplace her ikisini de yapıyordu. Örneğin, potansiyel kuramın önemi matematik yönüyledir. Sınır değer problemleri yine aynı değerdedir. Bunun gibi olan çalışma örnekleri arttırılabilir.

Laplace, 1785 yılında Akademinin sürekli üyesi seçildi. Sağlam ve karakterli bir yapısı vardı. Askeri okula giriş sınavında Napolyon Bonapart'ı (1768 -1821) imtihan etmişti. Daha sonra Napolyon onu siyasetin çamuruna ve bataklıklı sularına sürükleyecekti. Gerek Laplace ve gerekse Lagrange ihtilalin dışında kalmadılar. Newton son yıllarını siyasette geçirdiği gibi, Laplace da onu yenmek amacıyla siyasete atıldı. Napolyon ona içişleri bakanlığını verdi. Laplace, oldukça oynak fikirli davranışlarda bulunuyordu. Napolyon devrinin bütün nişanları göğsünü süslüyordu. Kötü bir yöneticiydi. Zaten içişleri bakanlığı görevini ancak altı hafta sürdürebilmiştir. Napolyon'la beraber onun da siyasi hayatı sona ermiştir.

Laplace'ın en iyi tarafı, matematik çalışan gençleri tutar ve onlara yardım ederdi. Laplace'ın bulunduğu bir toplantıda, Biot adlı bir genç matematikçi Akademide bir çalışmasını okur. Toplantı bittikten sonra Biot'u bir kenara çeken Laplace, cebinden çıkardığı ve sararmış kağıtları göstererek, aynı keşfi kendisinin yıllar önce elindeki. kağıtların eskiliğinden de anlaşılacağı üzere, bulduğunu ve yayınlamadığını gizlice söyler. Laplace, Biot'a bunu kimseye söylemeyeceğini ve çalışmasını çekinmeden yayınlamasını içtenlikle istemiştir. Bu onun, binlerce olumlu davranışlarından biridir. Laplace, matematik araştırmaları yapan gençleri manevi evladı gibi görür ve onlara kendi öz çocukları gibi yakınlık gösterirdi.

Laplace'la Lagrange, gerek zamanlarında gerekse onlardan sonra gelenler tarafından olsun çok karşılaştırılmışlardır. Bazıları Lagrange'ı tutmuş ve onu göklere yükseltmiştir. Bazıları da Laplace'ı tutup övmüştür. Aslında böyle bir karşılaştırmaya ve ayırt etmeye hiç gerek yoktur. İkisi de matematikte ölümsüz buluşlar yapmışlardır.

Laplace, son günlerini Paris yöresinde Arcueil'de geçirmiş, kısa bir rahatsızlıktan sonra 5 Mart 1827 yılında yetmiş sekiz yaşında ölmüştür. Sayısız eser bırakmıştır.
 
Leibniz (1646 - 1716)

"Ben de o kadar fikir var ki, eğer benden daha iyi görmesini bilenler bir gün onları derinleştirecek ve benim zihin emeğime kendi kafalarının güzelliğini katacak olurlarsa, sonraları belki bir işe yarayabilir" diyen Gottfried Wilhelm Leibniz, 1 Temmuz 1646 günü Leibzig'de doğdu. Ancak yetmiş yıl yaşadı. 14 Kasım 1716 yılında Hannover'de öldü. Babası ahlak ilmi öğretmeni olup üç nesilden beri Saksonya hükümetine hizmet etmiş bir aileden geliyordu. Bu nedenle, Leibniz'in ilk yılları oldukça ağır bir politika ile yüklü bir bilgiçlik havası içinde geçti.

Leibniz altı yaşındayken babasını kaybetti. Tarih hevesini babasından almıştı. Leipzig'de bir okula devam ediyordu. Babasının geniş kütüphanesinde bulunan çok sayıdaki kitapları sürekli okuyordu. Sekiz yaşında Latince'ye başladı. On iki yaşına gelince, Latince şiir yazacak kadar bu dilini ilerletti. Latince dilini öğrendikten sonra, kendi gayreti ile Yunan'ca öğrendi. Bu devirdeki zihni ve zekası Descartes'e benziyor ve çok iyi işliyordu. Klasik çalışmalardan usandığı için mantık ilmine başladı. On beş yaşından küçük olan bu çocuğun, klasiklerin ve skolastik Hıristiyanların büyüklerinin ortaya koyduğu mantığı düzeltmek için "Characteristica Universalis" adlı ilk denemesini verdi. Couturat, Russell ve başkalarının. dediği gibi, bu eser metafiziğin anahtarıdır. Yine İngiliz matematikçisi Boole'un söylediği gibi, kendisinin yarattığı sembolik mantık, Leibniz'in Characteristica'sının bir parçasıdır.

Leibniz, on beş yaşındayken Leipzig Üniversitesine bir hukuk öğrencisi olarak girdi. Zamanının tümünü hukuka vermiyordu. İlk iki yıl içinde birçok felsefe eseri okudu. Zamanının filozofları olan Kepler, Galile ve Descartes'ın keşfettikleri yeni dünya hakkında bilgiler edindi. Sonuçta, matematik öğrenmeden bu ilimleri kavramının olanaksız olduğu kanaatine vardı. 1663 yılının yazını Jena Üniversitesinde geçirdi. Orada matematikçi olan Erhard Weigel'in derslerini izledi.

Leibzig'e dönünce yeniden hukuka başladı. 1666 yılında yirmi yaşındayken doktora sınavı için hazırdı. Oysa, aynı yıllarda Newton, Woolsthorpe'ta bir köyde diferansiyel ve integral hesap ve genel çekim kanununu oluşturacak olan düşüncelere dalmıştı. Bu konuda Leibniz de geç kalmış sayılmazdı. Onu bu ateşe itecek ve tutuşturacak bir kıvılcımın çıkması gerekiyordu. Bu kıvılcım da, o zamanın Avrupa'sının ilme karşı görevini yerine getirme isteğiydi.

Leibniz'e gıpta eden titiz Leipzig Fakültesi ona resmen gençliğinden, gerçekte tüm profesörlerden fazla hukuk bildiğinden dolayı, doktora ünvanını vermeyi kabul etmedi. Halbuki, 1863 yılında on sekiz yaşındayken parlak bir tezle başölye ünvanını almıştı. Leipzig Fakültesinde egemen olan mistik düşünceden iğrenen Leibniz, doğduğu şehri bırakıp Nürnberg'e gitti. 5 Kasım 1666 yılında Alfdorf Üniversitesine bağlı Nürnberg Üniversitesi Tarihi Yöntem adlı çalışmasından dolayı doktora ünvanını verdi. Aynı zamanda hukuk kürsüsünü de kabul etmesini rica etti. Descartes kendisine verilen generallik ünvanını kabul etmemişse, Leibniz de öneriye yanaşmayıp isteklerinin ne olduğunu söylememişti. Fakat bu arzuların küçük prenslerin lehine çene yarıştırmak olduğuna ihtimal verilmezse de tarih bir süre sonra kendisini bu adamlara bağlamıştır. Leibniz'in hayatındaki bu acıklı öykü, kanun adamlarına, ilim adamlarından önce rastlamış olmasıdır.

Leibniz, hukuk derslerinin düzeltilmesi üzerine yazdığı kitabı, Leipzig'den Nürnberg'e olan bir seyahatinde kaleme almıştı, Bu da, Leibniz'in hangi koşullarda olursa olsun, durmadan okuması, yazması ve düşünmesini gösteren örneklerden biridir. O, durmadan okurdu, yazardı ve düşünürdü. Matematik çalışmalarının çoğunu kendisini çağıran aristokratlara giderken çağın o kötü yollarında kötü arabalar içinde sallana sallana giderken yollarda yazmıştır. Bu çalışmalarının tümü bugün Hannover kütüphanesinde bağlı olarak durur, Kimse de ona yanaşıp el atamaz. Çünkü, bunlar araştırmak için araştırıcı bir ordunun sabırlı bir çalışması gereklidir. Bu eserler ve fikirler o kadar çoktur ki, yayınlanmış veya yayınlanmamış fikirlerin yalnız bir tek kafadan çıktığına bile inanmak zordur. Bu kadar eseri düşünüp yazan kafa frenelog ve anatomistlerin dikkatini çekmiştir. Bir söylentiye göre, Leibniz'in kafasını mezardan çıkarıp ölçmüşler, incelemişler ve normal bir adamın kafasından pek küçük olduğunu görmüşlerdir. Gerçekten de, sağlığında da kafasının ölçüleri fazla büyük değildi. Bu kadar küçük kafalı olup da sürekli okuyan, düşünen ve yazan bir kimse dünyaya az gelmiştir.

1666 yılında olasılıklar kuramına başladı. Bu sıralarda öğrenciydi. Okuduğu her alanda olduğu gibi, bu sahada da eser veriyordu. Matematik, Leibniz'in parlak zekasının fışkırdığı bir sahadır. Bundan başka, hukuk, din, siyaset, tarih, edebiyat, mantık, metafizik ve kuramsal felsefe konularında sayısız eser bırakmıştır. Bundan dolayı kendisine evrensel deha denmektedir. Onun evrensel bir deha oluşu, diferansiyel ve integral hesaptaki sürekliliği, olasılıklar kuramında ise süreksizliği analize sokmasındadır. Zaten Newton'la ayrıldığı nokta da olasılıklar kuramıdır. Verimsiz gibi görünen soyut olasılıklar kuramının öncüsü Leibniz'dir. Doğru düşünme dediğimiz mantık anatomisinin ve fikirlerin kanunlarının bir olasılık analizi olduğunu görebilmiştir.

Newton'da, yüzyılının matematik düşünme yöntemi belirli bir şekil ve varlık halini almıştır. Cavalieri (1598-1647), Fermat (1601-1665), Wallis (1616-1703), Barrow (1630 -1677) ve başkalarının çalışmalarından sonra, diferansiyel ve integral hesabın oluşturulmasından kaçınılmazdı. Matematik bu olgunluğa gelmişti. Archimedes'ten bu yana da 2000 yıllık bir gecikme de olmuştu. İşte Leibniz, Newton gibi sonsuz küçükler hesabını billurlaştırdı. Leibniz, zamanının düşünme şeklini ifade eden bir araçtan çok daha büyük bir varlıktı. Matematikte Newton bu dereceye varamadı. Leibniz, matematik ve mantık alanında çağının iki yüzyıl ilerisindeydi. Diferansiyelin geometrik bir yorumunu verdi. Bu, matematiğe en büyük hizmetti. Süreklilik ve süreksizlik ya da analitik veya olasılıklar gibi matematik düşüncenin iki karşıt alanında fikir yürütmüş bir kimseye ne Leibniz'den önce ve ne de Leibniz'den sonra matematik tarihinde rastgelinememiştir. Leibniz'in olasılıklar kuramındaki çalışmaları onun yaşamı sürecinde değerlendirilememiştir. Hatta bir yerde taktir de edilememiştir. Ancak, on dokuzuncu yüzyılda Boole'un çalışmalarından sonra değer kazanarak yerini almıştır.Yirminci yüzyılda Whitehead ve Russell'ın çalışmaları, Leibniz'in evrensel bir gösterim hakkındaki hayalinin kısmen gerçekleştirilmesi olmuştur. İşte, ancak o devirde Leibniz'in tam istediği üstünlükte, ilmi ve matematik düşünme biçimi için, matematiğin olasılılıklar tarafının yüksek önemi gözüktü. Bugün, Leibniz'in olasılıklar yöntemi, gösterim mantığı ve gelişmelerinde meydana çıkarıldığı biçimde analiz için, analizin kendisi kadar önemlidir. O zaman, Leibniz ve Newton analizi bugünkü karışıklığın yoluna koymuşlardı. Çünkü, gösterim yöntemi, matematik analizi Zeno'dan beri temellerinden sarsan çelişkilerden ayırabilmek için biricik genel hal çaresini verir.

Leibniz, olasılıklar kuramı için Fermat ve Pascal'ın çalışmalarını da okumuştu. Onların bu yöndeki çalışmalarını daha da ileri götürmeyi düşünüyordu. Fakat, diferansiyel ve integral hesap daha çekiciydi. Bu hesabın gelişmesi ve uygulamaları on sekizinci yüzyıldaki matematikçileri de inanılmaz bir biçimde kendisine çekmiştir. Sonra, 1910 yılına kadar bugünkü fikirleri kabul etmeyen bazı kimseler hariç, onun olasılıklar analizi kimse tarafından bilinmedi. Leibniz'in gösterime bağlı düşünme fikri ancak Whitehead ve Russell'ın Principia Mathematica'larıyla gerçekleşti. 1910 yılından sonra, Leibniz'in bu programı, modern matematiğin en fazla ilgiyi çeken noktalardan biri oldu. Bugün bile bu konuda oldukça ciddi çalışmalar yapılmaktadır. Her doğru düşünmeyi bir gösterimle ifade etme fikrini Leibniz tek başına da yapmamıştır. Zaten bu proje daha yapılmamıştır. Leibniz tüm bunları düşünmüş ve bu alanda cesaret verici bir girişimde bulunmuştur. Fakat, değersiz şan ve gereksiz ünden çok, parasal olanaklar elde etmek için, küçük prenslerine karşı olan bağlılığı fikrinin evrenselliğine ve son yıllarını dolduran tartışmalar, Newton'un Principia'sına benzer bir şaheser yaratmasına engel oldu. Leibniz'in başardıklarını kısaca gözden geçirirken içinde birinci derecede bir matematikçi yeteneğinden çok daha fazla bir varlık sarf edilen bu para düşkünlüğünün derin izlerini göreceğiz. Newton hakkı olmayarak halkın kendisine şöhret verilmesini isteyen bir tutumu vardı. Gauss ise, fikirce kendisinden aşağıda olan insanların dikkatini çekmek için büyük eserinden uzaklaşması tutumunu sürdürmüştü. Tüm büyük matematikçiler arasında böyle zayıf tarafları görülmeyen tek matematikçi, Archimedes'ti. O, birçok kimsenin erişmek istediği aristokrat gibi yüksek bir zümrenin çocuğuydu ve bu nedenle de oldukça alçak gönüllüydü. Leibniz'e gelince, kendini kullanan aristokratlardan bol bol para alıyordu. Bu şekildeki para kazanmalar Leibniz'in matematiğinin daha çok ilerlemesine bir engeldi. Gauss'un söylediği gibi, Leibniz, matematik bilgisinin çoğunu boş yere israf etmiştir. Her ne olursa olsun, Leibniz bir değil birçok hayat yaşamıştır. Sadece diplomatik alanda yaptığı işler, bir insanın hayatını doldurmaya yeter. Şüphesiz, bu çok yönlü yaşamın sonu gelmedi. Eğer onun eğildiği her konuda verdiği eserleri toplayacak büyük adamlar olsaydı, bugünkü ilim ve özellikle matematik tarihi bambaşka olurdu. Bunun yerine, yirmi yaşında Mainz Elektörü için bir hukuk danışmanı ve hatırı sayılır bir ticaret memuru oldu.
1672 yılına kadar, modern matematik hakkında çok az şey biliniyordu. Yirmi altı yaşına gelince, Paris'te fizikçi Christian Huygens'e (1629 -1695) rastladı. Saatler kuramı ve ışığın dalga kuramının kurucusu olan Huygens aynı zamanda iyi bir matematikçiydi. Leibniz'e sarkaç üzerinde yaptığı çalışmaları gösterdi. Huygens'in kendisine dersler vermesini istedi ve onun bu isteği Huygens tarafından kabul edildi. Doğuştan bir matematikçi olan Leibniz'in dehası, Huygens'in verdiği dersler altında parlamaya başladı. 1673 yılının ocak ayından Mart ayına kadar İngiltere'ye yaptığı seyahatler süresince derslere ara verildi. İngiliz matematikçilerinin bazılarına yaptığı çalışmaları gösterdi. Böylece onlarla tanıştı.

Leibniz, Londra'da kaldığı süre içinde Royal Society'nin toplantılarına katıldı. Orada, kendisinin yaptığı hesap makinesini ve diğer keşiflerini sundu. 1673 yılında Royal Society'nin ilk yabancı üyesi oldu. Buna karşın, Newton da, 1700 yılında Paris'teki İlimler Akademisinin ilk yabancı üyesi seçildi. Londra'ya dönünce, Huygens ona matematik çalışmalarına devam etmesini öğütledi; 1675 yılında diferansiyel hesabın bazı basit formüllerini çıkarmış, yine kendi sözüne göre, temel teoremi keşfetmişti. Fakat bu teorem ancak 11 Temmuz 1677 yılından önce yayınlanmadı. Newton da eserini Leibniz'in eseri yayınlandıktan sonra yayınladı. Leibniz, 1682 yılında kurduğu ve baş yazarlığını yaptığı Acta Eruditorum'da imzasız yazdığı bir yazı ile Newton'un sert bir eleştirisini yapınca kıyametler koptu ve aralarındaki tartışma ciddi boyutlara ulaştı. 1677 ile 1704 yılları arasında, Leibniz'in yaptığı çalışmalar tüm Avrupa'da yayıldı. Özellikle, İsviçre'li Jacques ve Jean Bernoulli'nin bu matematiğin yayılmasında çok fazla yararları oldu. Halbuki, İngiliz'ler Newton'un çalışmalarını devam ettirmediler. Bu nedenle de İngiltere'den uzun yıllar matematikçi çıkmadı.

Leibniz'in son kırk yılı, aşağı yukarı Brunswick ailesine hizmetle geçti. Bu aile için bir arşivci, soylarını çıkaran bir tarihçi olarak çalışıyordu. Efendilerinin çıkarları için eski evrakları çıkarıyor ve yerine göre de ustaca tarihi gerçekleri saptırmak için silinti ve kazıntı bile yapıyordu. 1687 ile 1690 yılları arasında tarihi araştırmalar yapmak amacıyla tüm Almanya'yı, Avusturya'yı ve İtalya'yı gezdi.
İtalya'da bulunduğu sırada Roma'yı ziyaret etti. Papa tarafından Vatikan'ın kütüphanecilik görevini almaya davet edildi. Koşullardan ilki Katolik olması ile ilgili olduğundan, bu görevi Leibniz kabul etmeyerek geri çevirdi. Bir ara Katoliklerle Protestanları barıştırmak için 1683 yılında Hannover'de toplanıldı. Fakat bir barış sağlanamadı. Leibniz'in bu ve bundan sonraki barıştırma ve birleştirme çalışmaları da sonuç vermedi. 1688 yılında Katoliklerle Protestanlar arasında İngiltere'de kanlı çarpışmalar oldu. Her iki tarafın karşılıklı suçlamaları ve kötülemeleri altında bu mezhep kavgaları sürüp gitti. Bu kavgalardan zarar gören birçok matematikçi de vardır.

Leibniz'in uğraştığı konuların tam bir listesini vermek olanaksızdır. İktisat, filoloji, devletler hukuku, maden ocakları yapımı, teoloji, sayısız akademinin kurulması ve geliştirilmesi gibi her şeye el atmıştır. Onun en az başarılı olduğu saha mekanik ve fizikti. En önemli eserleri içinde birçok akademiyi kurması ve onları çalıştırması sayılabilir.

Altmış sekiz yaşına doğru iyice Çöktü. Eski zekası kalmadı. Sanki bir gölge haline gelmişti. Hastaydı. Çok çabuk ihtiyarlıyordu. Tüm hayatınca prenslere hizmet etmiş olan Leibniz, bu hizmetlerin karşılığını görüyordu. Tartışmalardan bıkmış ve kendisi de çökmüştü. Daha önce hizmetini yürüttüğü George Louis, onu kabul etmiyor ve Hannover kütüphanesine gidip ünlü Brunswick ailesinin yanına dönmesini öğütlüyordu. Üç yüz yıllık bir tarih zamanını inceledikten sonra bu tarihi 1005 yılından öteye götüremedi. Tarihte diplomatça bazı değiştirmeler de yapmıştır. Bu da onun saygınlığına biraz gölge düşürmüştür. Leibniz'in bu el yazmalarını da tam olarak inceleyecek kimse çıkmamıştır.

Bu kadar çok yönlü olan Leibniz, yetmiş yaşına gelince, 14 Kasım 1716 günü Hannover'de öldü. Bizde, matematiğe yaptığı sayısız hizmetleriyle yaşamaktadır.
 
Leonhard Euler (1707 - 1783)

18. yüzyıl İsviçre'si, matematikçiler ailesinin en meşhur matematikçisidir. Çağdaşları tarafından "Canlı Analiz" adı ile belirtilir. Aynı zamanda; matematik tarihinde, en çok eser ortaya koyan matematikçi olarak görülür. Kaynaklar, matematikle ilgili ortaya koyduğu eser sayısını seksen olarak belirtir.

İsviçre'nin Bale şehrinde, 15 Nisan 1707 tarihinde doğmuştur. Ertesi yıl, babası Paul Euler ve Annesi Merguerite Brucker ile birlikte, babasının kalvinist papazı olduğu Bale şehrinin yakınındaki Richen köyüne yerleşti.

Genç yaşta Bale Üniversitesi'ne girerek teoloji ve İbranice öğrenimi de gördü.

Büyük Petro'nun Rusya'ya getirdiği ressam Gsell'in kızı ile evlendi. Çocuklarını çok severdi. Sekizi küçük yaşlarında ölen on üç çocuğu oldu. 1735 yılında aşırı çalışma sonucu beynine kan hücüm ederek, sağ gözünü kaybetti. Gittikçe artan bir körlük sonucu, geri kalan ömrünü üzüntü içerisinde geçirdi.

1736 yılında, karısının ölümü, O'na büyük üzüntü kaynağı oldu. Ertesi yıl, ilk karısının üvey kardeşi Salomone A. Gsell ile evlendi. Başka bir büyük felaket de, sol gözünü iyi etmek ümidi ile yapılan ameliyatın muvaffakiyetsizlikle neticelenmesi oldu. Başlangıçta ameliyat başarılı geçti. Sonraları, yaranın iltihaplanması sonucu, şiddetli acılar çekti.

7 Eylül 1983 tarihinde, 77 yaşında iken, beyin kanaması sonucu hayata gözlerini kapadı.

İLMİ ŞAHSİYETİ

İlk matematik bilgilerini, babası Paul Euler'den aldı. İlahiyat öğrenimi görmek üzere, Basel Üniversitesine gönderildi. Burada Jean (I) Bernovilli 'nin derslerine devam etti. O'nun oğulları ile yakın arkadaş oldu. Onlar, Katerina I tarafından Saint-Betesburg'a çağrılınca, Euler de beraber gitti. 1732 yılında, İsviçre'ye dönen Daniel Bernouilli'nin kürsüsünde, O'nun yerini aldı. 1735 yılında, Mekanik Üstüne İnceleme (Traite Comple de Mecanique) adlı kitabı yayımlandı. Bu eserdeki konular, analizin, hareket bilimine uygulandığı ilk eserdir. 1741 yılında, Frederich II tarafından Berlin'e davet edildi ve 1744 yılında, Berlin Akademisi Matematik Bölümü Müdürü oldu.

Kendilerine oranla, bazı belirsiz fonksiyonların, bütün öteki fonksiyonlardan daha büyük ve daha küçük olduğu eğrileri veya yüzeyleri belirlemeye yarayan, Eş Çevreler Teorisi (Theorie des Isoperimetres) adlı eserini bu sırada bitirdi. Euler, bu eserinde, konu ile ilgili çözümlerin metodunu geliştirdi ve bunu genel bir formülle gösterdi. Aynı yıl, Gezegenlerin ve Kuyrukluyıldızların Hareket Teorisi (Theroie du Mouvement des Planetes et des Cometes) adlı eserini yayımladı. Mıknatıslanma Torisi (Theroie de L' Aimantation) için, Paris Fen Akademisinin koyduğu ödülü kazandı. Bu yıllarda, Prusya Kralı'nın istediği, balistik problemleri çözdü. Kralın yeğeni, Anhalt-Dessau Prensesi, O'ndan fizik dersleri almak istedi. Yine bu sırada, Sonsuz Küçükler Analizine Giriş (İntroduction in Analysis İnfinitrom) (1748) ve Diferansiyel Hesabın Kuruluşları (İntotuones Calculi Differeniolis) (1755) adlı iki eseri yayımlandı. Bu kitaplar, uzun yıllar, konusu ile ilgili temel eserler sayıldı.

1776 yılında; Katerine II tarafından, Saint-Petersburg'a çağrıldığı sırada, öbür gözünü de kaybetti. Fakat bu sakatlık, O'nu çalışmalarından alıkoymadı ve İntegral Hesabın Kuruluşları (İnstitutiones Calculi İntegralis) (1768-1770) adlı eserinin çıkmasına engel olmadı.

Paris Fen Akademisi, Euler'in birçok çalışmalarını mükafatlandırmıştı. Ay teorisini, yeniden geliştirmesi için, 1770 ve 1773 yıllarında bir yarışma açtı. Bu yarışmayı, Euler ve oğlu Johann Alberecht kazandı.

Euler, matematikte yeni olan; Euler Açıları, Euler Çemberi, Euler Değişmezi, Euler Doğrusu, Euler Formülleri, Euler Fonksiyonu, Euler şekilleri gibi, pek çok yeni kavramlar kazandırdı.
 
Lipschitz (1832 - 1903)

Bir Alman matematikçisi olan Rudolph Otto Sigismund Lipschitz, 1832 yılında Königsberg'de doğdu. 1864 yılından itibaren Bonn üniversitesinde matematik profesörlüğü yaptı. Matematik analiz ve diferansiyel geometrinin gelişmesine önemli katkılarda bulundu. Diferansiyel denklemler sisteminin varlığı ve genel integralinin tekliği teoremlerini ispatladı. Bu ispat, Cauchy'nin ispatında kullanılan koşullardan daha çok genel koşullar altında geçerlidir. Diferansiyel geometri alanında, Ricci ve Levi-Civita'nın çözümlediği diferansiyel hesabın formül haline getirilmesinde çok önemli rol oynayan incelemeler yaptı. 1903 yılında Bonn'da öldü.
 
Geri
Top